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We study a system comprising a spheroidal particle with permittivity �2 and conductivity �2 immersed in a

host medium with permittivity �1 and conductivity �1 in the ac external electric field with a strength E� 0 and
frequency �. We determined conditions when orientation of a spheroidal particle with a finite electric conduc-
tivity at t→� coincides with the orientation of the ideal dielectric spheroidal particle, when orientation of a
spheroid at t→� is normal to the orientation of the ideal dielectric spheroidal particle, and when orientation of
particle is not affected by the external electric field. We found the direct connection between the final orien-
tation of the particle and the existence of two time intervals, T1��� and T2���, such that during time interval T1

an equilibrium orientation of the particle is the same as the equilibrium orientation of an ideal dielectric particle
while during time interval T2 the direction of the stable equilibrium orientation is normal to the equilibrium
orientation of an ideal dielectric particle. The values T1 and T2 depend on the frequency of the external field �

and T=T1���+T2���, where T=2� /�.
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I. INTRODUCTION

The dynamics of solid or liquid particles in a host medium
under the action of an external electric field is of theoretical
and technological interest. Technological applications in-
clude manipulation of microparticles in biotechnology and
genetic engineering �1�, nanotechnology �2,3�, and noncon-
tact measurements of physical properties of particles.

The results obtained in numerous theoretical and experi-
mental studies on particle dynamics under the action of the
external electric field are summarized in several survey pa-
pers and monographs �4–7�.

In our previous study �8� we investigated the behavior of
various physical parameters, e.g., electric current, dipole mo-
ment, and surface charge, in the case when an ellipsoidal
particle with a finite electric conductivity �2 and permittivity
�2 is embedded in a host medium with permittivity �1 and
conductivity �1, and the whole system is subjected to the ac
electric field with a frequency �. We found that the stable
equilibrium orientation of the particle changes during the
period of the external field T. During time interval T1 an
equilibrium orientation of the particle remains the same as
the equilibrium orientation of an ideal dielectric particle
while during time interval T2 the direction of the stable equi-
librium orientation is normal to the equilibrium orientation
of an ideal dielectric particle. The values T1 and T2 depend
on the frequency of the external electric field �, and T
=T1���+T2���, where T=2� /�.

In the present study we investigate the dynamics of the
particle. In a general case the dynamics of the particle, em-
bedded in a leaky dielectric medium, is quite involved and
can become chaotic under the sufficiently large amplitude of
the external field as it was showed in Ref. �9�. The behavior
of a cylindrical particle under the action of a constant electric

field with the direction normal to the axis of symmetry of the
particle was investigated in Ref. �9�. It was demonstrated that
even in this relatively simple case, provided the amplitude of
the external field is sufficiently large, the system of equations
describing the dynamics of the particle is equivalent to a
Lorenz’s system of equations.

In the present study we consider rotation of the spheroidal
particle around one of the axes that is not the axis of sym-

metry. The vector of the external field, E� 0, is in the plane
normal the axis of rotation �see Fig. 1�, and we consider a
time-dependent external field. Clearly, in the general case,
introduction of these additional effects only complicates the
behavior of the particle. However, we have found the range
of the parameters of the problem whereby the behavior of the
particle is determined only by the effect of alternating equi-
librium orientations of the particle. In this case the condition
T2����T1��� implies that the final orientation of the particle
at t→� is normal to the orientation of an ideal dielectric
particle. In a case when T2����T1���, the final orientation
of the particle coincides with the orientation of the ideal
dielectric particle. In this study we determined the depen-
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FIG. 1. Ellipsoid with the lengths of semiaxes a1 ,a2 ,a3 �a1

=a2�a3–prolate spheroid and a1=a2�a3–oblate spheroid� and
electric permittivity �2 and conductivity �2 inside a host medium
with permittivity �1 and conductivity �1 in the external electric field

E� 0.
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dence of the ratio, T2��� /T1���, on the frequency of the
external field, �. We showed that there exist two frequencies,
�1 and �2, whereby T2���=T1���, and, consequently, the
electric with these frequencies field does not affect the ori-
entation of the particle. The obtained theoretical results are
validated by analyzing the orientation spectra of particles
that were overviewed in Ref. �5�.

Since the considered problem is of great interest in vari-
ous biotechnological and nanotechnological applications it
was studied in other investigations �see, e.g., Refs. �5,10��.
Stability of orientation of the ellipsoidal particle was inves-
tigated in Ref. �10� using a formula for energy in the case of
the ideal dielectric. Physically such an approach is not con-
sistent since it neglects energy losses caused by the finite
electric conductivity. Mathematically, the approach pursued
in Ref. �10� is also not well founded since applying Fourier
transform to the nonlinear system of equations requires de-
veloping a consistent derivation procedure that cannot be
reduced to a substitution �→�1+ i�2 /�.

This investigation is based on the formula for torque,
M�t�, acting at the particle that was derived in our previous
study �8�. This approach allowed us to determine conditions
for the monotonic relaxation of the orientation of the par-
ticle, and to demonstrate the connection between the final
orientation of the particle in a weak electric field and the
ratio of time intervals, T2��� /T1���. Analysis of the behavior
of T2��� /T1��� in a wide range of parameters that was per-
formed in the present investigation is of importance in its
own right since it allows us to analyze the dynamics of par-
ticle when the behavior of particles is more involved than in
the case considered in this study.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Consider an ellipsoidal inclusion with the lengths of the
axes a1 ,a2 ,a3, permittivity �2, and electric conductivity �2
that is immersed instantaneously into a host medium with
permittivity �1 and electric conductivity �1 and is subjected

to the external electric field E� 0 �see Fig. 1�.
The host medium with an embedded particle can be con-

sidered as a piece-wise homogeneous medium. Since a
charge is localized at the inhomogeneous inclusions, in the
case of a piece-wise homogeneous medium it accumulates at
the interface boundaries. The density of a surface free charge
	 is determined by the following relations:

� 
exdV =� 	dS, or 
ex = 	��u���� u� , �1�

where ��u� is a Dirac’s delta function, u=F�x ,y ,z , t�, and
u=0 is the equation of the surface.

In a leaky dielectric medium a system of equations that

determines the potential component of the electric field, E�

=−�� �, reads �5,6�

�� · D� = 
ex, �2�

�
ex

�t
+ �� · j� = 0. �3�

The electrostatic induction D� and the electric current density
j� are determined by the following relations:

D� = �0�E� , j� = j�� + j�c, j�� = �E� , E� = − �� � , �4�

where j�c is a convective electric current caused by a macro-
scopic motion of the charged particles.

In the case of a rotating particle which is considered in
this study,

j�c = v�s	��u���� u�, v�s = � � r�s, �5�

where � is the angular velocity of the particle and r�s is the
radius vector at the particle’s surface.

Equations �1�, �4�, and �5� yield the following boundary
conditions for Eqs. �2�, �3� on the interface boundary:

�N� · D� � = 	, �N� · j��� = −
�	

�t
− v�s · ��� − N� · �� �	 . �6�

Here �A�=A+−A−, A+, and A− are values of the function A at

the external and the internal surfaces, respectively, and N� is
an external unit normal vector to the particle’s surface.

In order to solve the above problem it is convenient to
switch to a frame associated with the particle whereby the
axes of coordinates rotate together with the ellipsoid and are
directed along the principal axes of the ellipsoid. In this
frame v�s=0, and the equations of the surface of the ellipsoid
u��x� ,y� ,z� , t� and the components of the electric field read

u� = �
i=1

3
xi�

2

ai
2 − 1, E� = �

i=1

3

Ei�e�i�, e�i� = �� xi�, �7�

where e�i��t� are unit vectors directed along the axes of the
ellipsoid. The components of electric field in the rotating
frame, Ei�, are determined through the components of electric
field in the laboratory frame, Ek, using the transformation of
the rotation, and for the case considered in this study these
expressions are written below �see Eqs. �20��. Instead of the
boundary conditions �6�, in the rotating frame we obtain the
following boundary conditions:

�N� � · D� � = 	�, �N� � · j��� = −
�	�

�t
, �8�

where N� � is an external unit normal vector to the particle’s
surface in the system of coordinates x� ,y� ,z�, and 	� is a
distribution of the surface charge in the rotating frame.

A system of equations �2�, �3�, relations �4� with 	� c=0� ,
and boundary conditions �8� provide the mathematical for-
mulation of the problem that is considered in this study. After
finding the solution of this boundary value problem the so-
lution in the laboratory frame can be obtained by changing
variables that are connected through the formulas of the
transformation of rotation. Clearly while in the rotating
frame the solution satisfies the boundary conditions �8�, in
the laboratory frame the solution satisfies the boundary con-
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ditions �5�. In order to simplify the notations hereafter we
omit primes near the variables in the rotating frame of refer-
ence.

The scalar potential in the ellipsoid and in the host me-

dium is governed by Laplace equation �� 2�=0, and it is con-
venient to represent a scalar potential as

� = �� + ��. �9�

Here �� is a potential caused by a local polarization occur-
ring on the microscopic time scale, and it is equal to the total
potential in the case of the ideal dielectric:

�� = − �
i=1

3
E0ixi

1 + f i�
���− �� + ����	1 + f i�
1 −

Ii���
Ii�0��� ,

�10�

where

Ii��� = �
�

� ds

�s + a�R�s�
, R�s�

= ��s + a1
2��s + a2

2��s + a3
2�, f i� = ��ni,

�� =
�2

�1
− 1,

ni = R�0�Ii�0�/2

is a depolarization coefficient of a spheroid,

0 � ni � 1, �
i=1

3

ni = 1, ��x� = �1, x � 0

0, x � 0
,

� is the ellipsoidal coordinate determined through x1 ,x2 ,x3
by formulas presented in Ref. �11� �Chap. 1, Sec. IV�, and �
is chosen such that �=0 corresponds to a surface of the
spheroid u=0.

The additional potential �� arises due to the finite con-
ductivity, and it is caused by the accumulation of the electric
charge at the surface of the ellipsoidal particle. The expres-
sion for �� reads

�� = − �
i=1

3
xi�f i� − f i���i�t�
�1 + f i���1 + f i��	��− �� +

Ii���
Ii�0�

����� . �11�

Here f i�=��ni, ��=
�2

�1
−1, and the function �i�t� is deter-

mined through the components of the electric field along the
principal axes of the ellipsoid, E0i:

d�i�t�
dt

+
�i�t�

�i
=

E0i

�i
, �12�

where the relaxation times of the surface charges

�i = �0
1 + f i�

1 + f i�
, �0 =

�0�1

�1
.

As it has been noted above, formulas �6�–�11� and the equa-
tions below are written in a frame associated with the rotat-
ing ellipsoid. Therefore xi in Eq. �11� are coordinates in the

system where the axes are directed along the principal axes
of the ellipsoid.

According to Eqs. �4� the scalar potential � determines all
electrodynamic parameters of the problem.

In the analysis of the dynamics of the rotating ellipsoid
we use the concept of the dipole moment whereby the ex-
pression for torque acting at the ellipsoid reads �5�

M� = �1P� � E� 0, �13�

where P� is a dipole moment of the ellipsoid. Using Eqs. �1�
the expression for the dipole moment P� can be written as
follows:

P� =� 	Tr�dS , �14�

where integration is performed over the surface of the ellip-
soid and 	T is surface density of the total charge on the
surface:

	T = �0�E� � · N� . �15�

Similarly to the scalar potential �, an expression for the di-
pole moment and other physical parameters can be written as
follows:

P� = P� � + P� �. �16�

Using Eqs. �10�, �11�, �14�, and �16� we arrive at the follow-

ing expressions for P� � and P� �:

P� � = �0V�
i=1

3
E0ie�i��

1 + f i�
, P� � = �0V�

i=1

3
�ie�i��� − ���

�1 + f i���1 + f i��
.

�17�

Now employing Eq. �13� one can derive a general expression

for the torque acting at the particle, M� . This formula was
derived in Ref. �8�, and in the present study we consider only
a special case. Assume that a particle is a spheroid with the
axis of symmetry directed along the unit vector e�3. The axis
of rotation coincides with one of the principal axes of the
spheroid and is directed along the unit vector e�2 �e�3=e�1

�e�2�.
Without the loss of generality it can be assumed that the

electric field E� 0 is normal to this axis. Equations �13� and
�16� yield the following expressions for the total torque act-

ing at the particle, M� =Me�2:

M = M� + M�, �18�

M� =
�0�1VE03E01��

2�1 − 3n�
�1 + f3���1 + f1��

,

M� = �0�1V��� − ���
 E01�3

�1 + f3���1 + f3��

−
E03�1

�1 + f1���1 + f1��� . �19�
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Let us measure a rotation angle � from the position when
direction of e�3 coincides with the direction of the external

electric field E� 0, and as the positive direction we select the
direction of the counterclockwise rotation with respect to the
axis e�2. Then

E� 0�t� = E0�t�cos���t��e�3 − E0�t�sin���t��e�1. �20�

The case when the external field is given by Eq. �20�
formulas for functions �1�t� and �3�t� read

�1�t� = −
1

�1
�

0

t

exp
−
�

�1
�E0�t − ��sin���t − ���d� ,

�21�

�3�t� =
1

�3
�

0

t

exp
−
�

�3
�E0�t − ��cos���t − ���d� . �22�

In the following we will focus on the investigation of the
behavior of noninertial particles.

III. DYNAMICS OF THE SPHEROIDAL PARTICLE
IN A WEAK AC FIELD

Relaxation equation for the dynamics of noninertial par-
ticle reads

�s�̇ = M�t� , �23�

where �s�̇ is a torque acting at the particle due to the viscos-
ity of a host fluid. M�t� is a torque acting at the particle due
to the external electric field.

Inspection of Eqs. �18�–�23� shows that particle dynamics
is quite involved even in the case of noninertial particles.
The situation is considerably simplified when the following
conditions are satisfied:

�� �
1

�
, �� � �1, �� � �3, �� =

2�S

�0�1VẼ0
2

, �24�

where � is a frequency of the external electric field, �� is the
effective relaxation time of the orientation of the particle �see

Eq. �34� below�, V is a volume of a particle, Ẽ0 is the am-
plitude of the external field, and it is assumed that the time
dependence of the external field is given by E0�t�
= Ẽ0cos��t�.

In the following we have shown that under these condi-
tions time variation of the angle, ��t�, occurs much slower in
comparison with the period of the external field. Conse-
quently, ��t−�� in Eqs. �21� and �22� can be replaced by ��t�,
and functions �1�t� and �3�t� can be easily calculated. For
simplicity we assume that t��1 ,�3. In this limit

�1�t� = − �̃i�t�sin���t��, �3�t� = �̃3�t�cos���t��,

�̃i�t� =
cos��t� + ��isin��t�

1 + �2�i
2 . �25�

Then using Eqs. �18� and �19� the equation for M�t� can be
written as follows:

M = M0
3n − 1

2
�Mc + 2Mstan��t��cos2��t� , �26�

where

M0 =
�0�1VẼ0

2sin�2��
2

, Mc =
Mc0

L
+

Mc2�2�0
2

L
+

Mc4�4�0
4

L
,

Ms =
b0��0

L
�b1�� + b2���2�0

2���� − ��� . �27�

The parameter L in Eqs. �27� is determined by the following
formula:

L = �1 + f3���1 + f1���1 + f3���1 + f1���1 + �2�1
2��1 + �2�3

2� ,

�28�

and expressions for Mc0 ,Mc2 ,Mc4 read

Mc0 = ��
2�1 + f3���1 + f1�� , �29�

Mc2 =
��� − ����3�� − �� + 3d1��

2 + d2��
3�

�1 + f3���1 + f1��

+ ��
2 �1 + f3��2�1 + f1��2 + �1 + f3��2�1 + f1��2

�1 + f3���1 + f1��
,

�30�

Mc4 = ��
2 �1 + f3��2�1 + f1��2

�1 + f3���1 + f1��
� 0, �31�

where coefficients b0 ,b1 ,b2 ,d1 ,d2 are given by the following
formulas:

b0 =
1

2

�1 + f3���1 + f1��
�1 + f3���1 + f1��

,

b1 = 2 + ��

1 + n

2
,

b2 = 2 + ��

1 + n

2
, �32�

d1 =
1 + n

2
+ ��

n�1 − n�
2

,

d2 =
�1 − n�2

4
+ n2 +

n�1 − n�
2


1 + ��

1 + n

2
� . �33�

Equations �26�–�33� describe the behavior of the torque,
M�t�, at any time provided that condition �24� is satisfied
and, consequently, �i�t� are determined by Eq. �25�. The
expression for Mc in this study is identical to the formula that
was derived in Ref. �8� but it is written in a more convenient
for further analysis form.

Since the angle ��t� in the approximation given by Eq.
�24� appears only in the formula for M0 �see the first formula
in Eqs. �27��, Eq. �23� can be easily solved. Then we obtain
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�tan���� = �tan��0��exp	 �3n − 1�
2


Mc
t

��

+
sin�2�t − ��

���

sgn�3n − 1��Mc
2

4
+ Ms

2�� ,

�34�

where tan���=2Ms /Mc and �0 is the initial angle at t=0.
Equation �34� can be also rewritten as follows:

�tan���� = �tan��0��exp
3n − 1

2
Mc

t

��
�B�t� , �35�

where B�t�= �
k=−�

�

Ik� �3n−1�
2���

�Mc
2

4 +Ms
2�exp�ik�2�t−�− �

2
�� and

Ik�z� are modified Bessel functions �12�. For slow variations
of sin���t�� and cos���t�� that were assumed in derivation of
Eq. �25�, the argument must be small, z�1. The latter con-
dition yields an additional condition to Eqs. �24�:

�Mc
2

4
+ Ms

2 � 1. �36�

Under conditions �24�, �36� the amplitude of the oscillations
with the frequency 2k� is of the order of �1/����k, and then
it can be assumed that B�t�=1.

Therefore when conditions �24�, �36� are satisfied and t
→�, the particle monotonically approaches the state with
�=0 or �=� /2. In the case of a prolate spheroid, n�1/3,
�→0 when Mc�0 and �→� /2 when Mc�0. Similar
analysis performed for the case n�1/3 shows that a condi-
tion Mc�0 corresponds to the orientation perpendicular to
the orientation in the case of the ideal dielectric. If Mc=0,
the external electric field does not affect the orientation of
the particle.

The physical reason for this behavior is directly associ-
ated with the existence of time intervals T1��� and T2���
such that stable equilibrium orientation of the particle during
time interval T1��� coincides with that in the case of the
ideal dielectric particle while during time interval T2���
stable equilibrium orientation of the particle is normal to the
equilibrium orientation of an ideal dielectric particle. The
existence of these time intervals can be deduced from Eq.
�26�. Indeed, Eq. �26� implies that if the following condition
is satisfied:

Mc + 2Mstan��t� � 0, �37�

then the equilibrium orientation of the spheroid is the same
as in the case of the ideal dielectric particle while in the
opposite case the equilibrium orientation of the spheroid is
directed perpendicular to the orientation of the ideal dielec-
tric particle.

Using the inequality �37� we can determine the time in-
terval T1��� during which inequality �37� is satisfied, and
time interval T2��� when the inequality is violated:

T1

T
=

1

2
+

Mc

��Mc�
tan−1� Mc

2Ms
�,

T2

T
=

1

2
−

Mc

��Mc�
tan−1� Mc

2Ms
� . �38�

Equations �38� imply that when Mc�0, T2�T1 and spheroid
is oriented perpendicular to the orientation of the ideal di-
electric particle. Equations �27� yield the following formula
for Mc:

Mc =
Mc4

L
��2 − �1

2��� − �2
2� , �39�

where �=��0,

�1
2 = −

Mc2

2Mc4
−�1

4

Mc2

Mc4
�2

−
Mc0

Mc4
, �40�

and

�2
2 = −

Mc2

2Mc4
+�1

4

Mc2

Mc4
�2

−
Mc0

Mc4
. �41�

Equations �29�, �31� imply that Mc0�0 and Mc4�0. There-
fore when the following conditions are met:

Mc2
2 � Mc0 · Mc4, Mc2 � 0, �42�

then �1
2�0, �2

2�0, and T2����T1��� in the frequency range
�1����2. In this frequency range and when conditions �42�
are met a particle is oriented normally to the orientation of
the ideal dielectric particle. If conditions �42� are violated,
the frequency range where T2����T1��� does not exist, and
in the whole frequency range the final orientation of the par-
ticle is the same as in the case of the ideal dielectric particle.

To the best of our knowledge the direct investigations of
the dynamics of inversion of the orientation of the spheroidal
particle in an ac field caused by a finite electric conductivity
were not conducted as yet. However, the theoretical results
obtained in the present study can be compared with the ex-
perimental data qualitatively by analyzing orientation spectra
described in Refs. �5,13�. Monograph �5� �p. 125, Fig. 5.5�
discusses orientation spectra of small titanium dioxide par-
ticles suspended in isopropanol. Inspection of Fig. 5.5 shows
that for small and large frequencies the particles are oriented
as in the case of the ideal dielectric particles while for the
intermediate frequencies particles are oriented in the normal
direction in compliance with the condition �1����2, where
Mc�0. Moreover, these regions are separated by a narrow
interval of frequencies with indefinite orientation of the par-
ticles. It is conceivable to suggest that the latter observation
corresponds to the condition Mc=0 or T1���=T2���. Other
experimental results �see, e.g., Refs. �5,13�� are ambiguous
although some regions of the orientation spectra in these
study comply with the developed theory. Exact quantitative
comparison of the derived theoretical results with the experi-
mental data cannot be performed because of the following
two reasons. The first reason is that the accuracy of measure-
ments of electric conductivity of microparticles, �2, is not
sufficiently high. Thus, e.g., in Refs. �5,13� electric conduc-
tivity of particles was measured in S/m while electric con-
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ductivity of the solution was measured in �S/m. The second
reason is that the shape of the particle employed in Refs.
�5,13� is close to ellipsoidal while in this study we investi-
gated the case of a spheroidal particle. It must be noted that
the analysis presented below shows that geometry plays only
a minor role. Thus, e.g., the ratio of the temporal intervals,
T1��� /T2���, as a function of frequency, only weakly de-
pends upon a polarization factor, n. This means that for the
same magnitudes of the parameters �� and ��, a particle
changes its transversal orientation to the opposite one in ap-
proximately the same range of frequencies independent on
the geometry.

In Fig. 2 we showed the dependence of T1��� /T2��� vs
�=��0 for several values of parameters �� and ��. Inspec-
tion of this figure shows that the inequality T2����T1��� is
attained for ����� as well as for �����. Figure 3 shows
the dependence of T1��� /T2��� vs �=��0 for other values of
the parameters �� and �� whereby T2����T1��� in the whole
frequency range.

The derived equations yield the asymptotic formulas for
the ratio T1��� /T2��� for small, ��0→0, and large, ��0

→�, frequencies �. At small frequencies when ���1,
��0�1, or when ���1, ��0���,

T2

T1
=

1

�

��� − ���
��

��0
2 + ��

n + 1

2
�

�1 + f1���1 + f3��
. �43�

At large frequencies when ��0→�

T2

T1
=

4

�

b0b2������� − ���
Mc4��0

. �44�

IV. CONCLUSIONS

We investigated dynamics of a dielectric particle with a
finite electric conductivity immersed in a leaky dielectric
medium subjected to a weak ac external electric field when
the behavior of the particle reduces to a monotone relaxation.
We derived conditions for a monotone relaxation, Eq. �24�,
and additional condition �36�. Since the effective relaxation
time �� depends on the amplitude of the electric field �see
Eqs. �24�� the increase of the amplitude of the external elec-
tric field is accompanied by a reduction of ���1/E2. The
latter, according to Eq. �34�, implies excitation of the high
frequency oscillations and rapid variations of sin���t�� and
cos���t�� in this range of parameters. Clearly under these
circumstances ��t−�� cannot be replaced by ��t�, and the
analysis of particle dynamics under these conditions is quite
involved and warrants a separate study.
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FIG. 2. Dependence of the ratio T2 /T2 vs frequency of the ex-
ternal electric field �. 1−��=0.1, ��=1, n=0.1; 2−��=0.1, ��

=10, n=0.1; 3−��=0.1, ��=1, n=0.9; 4−��=0.1, ��=10, n
=0.9; 5−��=1, ��=0.1, n=0.1; 6−��=10, ��=0.1, n=0.1; 7
−��=1, ��=0.1, n=0.9; 8−��=10, ��=0.1, n=0.9.

FIG. 3. Dependence of the ratio T2 /T1 vs frequency of the ex-
ternal electric field �. 1−��=1, ��=5, n=0.1; 2−��=1, ��

=20, n=0.1; 3−��=1, ��=5, n=0.9; 4−��=1, ��=20, n=0.9;
5−��=5, ��=1, n=0.1; 6−��=20, ��=1, n=0.1; 7−��=5, ��

=1, n=0.9; 8−��=20, ��=1, n=0.9.
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